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This paper elaborates a generalized approach to the modeling of human and humanoid motion. Instead of the usual inductive approach that started from the analysis of different situations of real motion (like bipedal gait and running; playing tennis, soccer, or volleyball; gymnastics on the floor or using some gymnastic apparatus; etc.) and tried to make a generalization, the considered deductive approach started with formulating a completely general problem and derived different real situations as special cases. The paper first explains the general methodology. The concept and the software realization are verified by comparing the results with the ones obtained by using a "classical" software for one well known particular problem – biped walk. The applicability and potentials of the proposed method are demonstrated by simulation of a selected example. The simulated motion included a landing on one foot (after a jump), the impact, a dynamically balanced single-support phase, and the overturning (falling down) when the balance is lost. It was shown that the same methodology and the same software can cover all these phases.
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1. Introduction 

Researchers in biomechanics and robotics have done a lot to investigate different problems in motion of humans and humanoid robots, like bipedal gait and running; playing tennis, soccer, or volleyball; gymnastics on the floor or using some gymnastic apparatus; etc. Work [1] suggested a generalization based on a deductive approach: do not base on existing models of specific tasks, but develop a new, completely general model and then derive different real situations as special cases. This would be useful for several reasons. Besides a purely academic point of view where general methods are always looked for, a commercial aspect is also present. A software package that can cover a diversity of motions would be welcome.

However, a decisive argument for such generalization comes from the field of humanoid robots that are becoming more and more human-like in all aspects of their functioning. Since it is expected that they will replace humans in variety of tasks, it is generally accepted that their shape and motion should be based on biomechanical principles. Due to the complexity and high requirements imposed on such robots, their control system has to utilize the dynamic model. So, the control, the design, and the simulation, strongly require general dynamic models that will make humanoid robots capable of handling the increasing diversity of expected tasks.

The idea of the work presented in this paper is to check the new concept numerically, to show its potential by simulation, and make a step towards the final target - a general-purpose software that could be used for modeling and dynamic analysis of any human-like motion: from household duties, through the industrial jobs, to sports, and beyond. The authors are well aware of the extreme complexity of the problem of modeling biological systems, which stems from the complexity of the mechanical structure and actuation. The fact that the control of a biological system is still an insufficiently studied area, contributes greatly to the significance of the problem. Because of that, the authors start with the dynamic modeling of the structure of humanoid robots, which yields a solid approximation of dynamics of the mechanical aspect of human motion.
2. Principles and Background
According to [1], the general approach starts with an articulated system (e.g. a human body, a humanoid, or even an animal) that "flies" without constraints (meaning that it is not connected to the ground or to any object in its environment – see Fig. 1). The term flier was suggested. Such situation is not uncommon in reality (present in running, jumping, trampoline exercise, etc), but it is less common than the motion where the system is in contact with the ground or some other supporting object in its environment (e.g., single- and double-support phases of walking, gymnastics on some apparatus).

Let us discuss the contact of the flier and some external OBJECT (the term object includes the ground). A contact can be rigid or soft. 

With a rigid contact, one LINK (or more of them) of the flier is geometrically constrained in its motion. For instance, in the single-support phase of a bipedal gait, the foot (being a link of the system) is fixed to the support and does not move (or it moves in accordance with the motion of the support).

With a soft contact, there is no geometric constraint imposed on the system motion, but the strong elastic forces between the contacted link and some external object make the link motion close to the object. Two examples of a such contact are walking on a support covered with elastic layer, and trampoline exercise. 

Let us recall some additional justification of the flier-plus-contact approach. A human is strongly related with the ground (or any kind of support). He always needs the ground in order to "feel" his own position. It is desired that there is a physical contact with the ground; at least he needs to have a visual contact. However, a trained human (in gymnastics, trampoline exercise, somersaults, different ball playing, circus performance on the trapeze, etc.) is ready to see himself as a flier. He can feel his position in space – the ground loses its importance. Such humans can concentrate on the contact that is expected. It becomes possible to keep the eyes on the object that is to be contacted and thus concentrate just on this relative position. The object may be immobile (e.g. the ground or a gymnastic horse) or moving (e.g. a ball).
The method that is elaborated in this paper was promoted in [1]. Some of the main explanations and models have to be repeated here. Other preceding results do not exist. However, there have been some researches that were seen relevant for this topic and one should mention them. At the same time, they support the significance of the problem elaborated in this paper. The papers [2, 3] address the problem of unconstrained motion of human body (thus, flying), as it appears in a specific task – the somersaults on the trampoline. The next example of unconstrained motion and its realization can be found in the SONY humanoid that is able to run. Running, of course, includes the periods when no foot is in contact with the support [4]. Very common topic in the work on human/humanoid motion is the biped gait. Thus, the theory of Zero-Moment-Point (ZMP) should be mentioned [5, 6]. A review of advanced topics in humanoid dynamics is presented in [7]. 
3. Free-Flier Motion
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We consider a flier as an articulated system consisting of the basic body (the torso) and several branches (head, arms and legs), as shown in Fig. 1. Let there be 
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. The terms joint coordinates or internal coordinates are often used. The basic body is allowed to perform six independent motions in space, described by 
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 are orientation angles (roll, pitch, and yaw). Now, the overall number of degrees of freedom (DOFs) for the system is 
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We now consider the drives. It is assumed that each joint motion 
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 has its own drive – the torque 
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The dynamic model of the flier has the general form
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or 
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Dimensions of the inertial matrix and its submatrices are: 
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4. Link Motion and Contact

Let us consider a LINK that has to establish a contact with some external OBJECT. In one example, it is the foot moving towards the ground and ready to touch (in walking or running). In the next example, in a soccer game, one may consider the foot or the head moving towards a ball in order to hit. The external object may be immobile (like ground), an individual moving body (like a ball), or a part of some other dynamic system (even another flier, like in a trapeze exercise in the circus). Note that the contact might be an inner one – involving two links of the considered system; the example is a tennis player holding the racket with both hands.

In order to express the coming contact mathematically, we describe the motion of the considered link by an appropriate set of coordinates. Since the link is a body moving in space, it is necessary to use six coordinates. Let this set be 
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and let us call them functional coordinates (often referred to as s-coordinates). Functional coordinates are introduced as relative ones, defining the position of the link with respect to the object to be contacted. Several illustrative examples of s-coordinates were shown in [1]. Each choice was made in accordance with the expected contact – to support its mathematical description.

A consequence of the rigid link-object contact is that the link and the object perform some motions, along some axes, together. These are constrained (restricted) directions. Let there be m such directions; m is a characteristic of a particular contact. Relative position along these axes does not change. Along other axes, relative displacement is possible. These are unconstrained (free) directions. In order to get a simple mathematical description of the contact, s-coordinates are introduced so as to describe relative position. Zero value of some coordinate indicates the contact along the corresponding axis. In the example, the contact of the robot foot and the ground, we may distinguish a few situations (Fig. 2). The heel contact (Fig. 2a) restricts five s-coordinates, leaving one free (thus, m = 5). The full-foot contact (Fig. 2b) restricts all six coordinates (m = 6). Finally, if the robot is falling down, overturning about the foot edge (Fig. 2c), there is again m = 5.

The motion of the external object (to be contacted) has to be known (or calculated from the appropriate mathematical model), and then the s-frame fixed to the object is introduced to describe the relative position of the link in the most proper way. In the case of an inner contact (two links in contact), one link has to play the role of the object. Thus, in a general case, the s-frame is mobile. As the link is approaching the object, some of the s-coordinates reduce and finally reach zero. The zero value means that the contact is established. These functional coordinates (which reduce to zero) are called restricted coordinates and they form the subvector 
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where K is a 
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matrix used, when necessary, to rearrange the functional coordinates (elements of the vector s) and bring the restricted ones to first positions.

[image: image30.wmf]
Fig. 2 Different contacts of the humanoid-robot foot and the ground. Upper index "c" indicates constrained (restricted) coordinates, while "f" indicates the free ones.
Note that there are several types of possible contacts between the two bodies. One contact would restrict some s-coordinates while the other would restrict a different set. Different links might establish a contact. In different tasks, the same link will establish different contacts with different objects. For each example, a specific s-frame is needed. So, in order to arrive to a general algorithm, we have to describe link motion in a general way and, once the expected contact is specified, relate this general interpretation to the appropriate s-frame.
The general description of the link motion assumes the three Cartesian coordinates of a selected point of the link plus the three orientation angles: 
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, the subscript l standing for "link". These are absolute external coordinates. The relation between the link coordinates 
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where 
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 is a 6-dimensional adjoint vector.

Let us concentrate on the object. In different examples, the same object will be contacted in a different way (e.g., in handball, the hand grasps the ball, while in volleyball the hand hits the ball). Now consider the ground (as an example of an immobile object); in walking, one type of contact of the foot and the ground exists, while in ice-skating the contact will be of a rather different kind. In a general case, the object is mobile, so, its position is described by the absolute external coordinates: 
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, the subscript b standing for "object".

When the s-frame is introduced to define the relative position of the link with respect to the object, the coordinates will depend on both 
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or in the Jacobian form:
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where dimension of all Jacobi matrices is 
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, and the dimension of the adjoint vector 
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Model (10) can be rewritten if the separation (4) is introduced. The model becomes
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The object motion, 
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 in eqs. (8)-(10), is either prescribed or calculated from a separate mathematical model of the object. Eqs. (11) and (12) can be rewritten if (7) is introduced:
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where the model matrices are: 
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When speaking about a moving object one may distinguish two cases. The first case assumes that the object motion is given and cannot be influenced by the flier dynamics. Immobile object is included in this case. Such situation appears if the object mass is considerably larger than the flier mass (so, the flier influence may be neglected), or if the object is driven by so strong actuators that can overcome any influence on the object motion. An example would be walking on the ground, i.e. contact between the foot and the ground. Ground is the immobile object. Another example is walking on a large ship. The ship is a large object that moves practically independently of the walker. The ship is a dynamic system but it cannot be influenced by the walker, and so, from the standpoint of the walker, the ship motion may be considered as given. Equations (13), (14) apply for this first case.
The other case refers to the object being a "regular" dynamic system, so that the flier dynamics can have an effect on it. The example is a handball player that catches the ball. The ball is an object strongly influenced by the player. The next example is the walking on a small boat. The boat behavior depends on the motion of the walker. For this case, eqs. (11), (12) should be combined with the dynamic equations of the object.
Division of contacts can be done based on the existence of deformations in the contact zone. If there is no deformation, i.e. if the motions of the two bodies are equal in the restricted directions, then we talk about the rigid contact. If deformation is possible, then the motions in the restricted directions will not be equal. Theoretically, they will be independent, but in reality they will be close to each other, due to the action of strong elastic forces. In this case, we talk about the soft contact.

Another division of contacts is also necessary. One class of contacts encompasses durable (lasting) contacts. This means that the two bodies (flier and object), after they touch each other and when the impact is over, continue to move together for some finite time. The example is walking. When the foot touches the ground, it will keep the contact for some time before it moves up again. The next example is found in handball playing. When the player catches the ball, he will keep it for some time before throwing.

The other class represents the instantaneous, short-lived contacts. When the two bodies touch each other, a short impact occurs, and after that the bodies disconnect. A good example is the volleyball player who hits the ball (with his hand).

It is clear that a general theory of impact, including the elastodynamic effects, can cover all the mentioned contacts. However, our intention is to demonstrate the feasibility and potentials of the proposed method and verify it numerically, and not to explore all the details of impact effects. Thus, the discussion of the contact type is not seen as a primary problem. So, in the present paper, we are going to elaborate in detail one representative type of contact – rigid, durable contact involving the object that moves according to a given law.

5. Analysis of the Contact 

This section adopts the following:

• contact is rigid  – allowing no deformation between the two bodies;

• object motion is given and cannot be influenced by the flier (thus, 
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 is considered given);

• contact is durable – lasting for a finite time after the impact.

One may recognize the three phases of such contact task [8, 9, 1]. 

Phase 1 is approaching. The link moves towards the object. All functional coordinates 
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 are free but some of them (subvector 
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) gradually reduce to zero.

Phase 2 is the impact. In the preceding phase (approaching), the motion of the link could be planed so as to hit the object (like in volleyball or in landing after a jump), or it could be planned so as to reach the object with a relative velocity equal to zero (collision-free contact, like in grasping a glass of wine). This is the reference motion. In the first case, the collision (and the impact) is intentional. In the other case, collision is undesired but it still occurs. Namely, the control system produces the actual motion different from the reference; the tracking error leads to a collision, a non-zero-velocity contact.  The impact forces will affect the system state – after the impact the link state will comply with the object state and the type of contact. 

Phase 3 is the regular contact motion. The contact forces make the link move according to the character of the contact.

We now elaborate these phases starting with the first one. The third phase (regular contact motion) will be discussed before the second phase (impact) since it is more convenient for the mathematical derivation of the models.
5.1. Phase 1 - Approaching 

From the standpoint of mathematics, approaching is an unconstrained (thus free) motion. Although all coordinates from the vector s are free, we use the separation (4) since the subvector 
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 is intended to describe the coming contact. Strictly speaking, the restricted coordinates (elements of 
[image: image60.wmf]c

s

) reach zero one by one. So, a complex contact is established as a series of simpler contact effects. Without losing the generality one may assume that all the coordinates 
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The dynamics of the approaching is described by the model (2). The model represents the set of N scalar equations that can be solved for N scalar unknowns – acceleration vector 
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During the approaching, the integration of the system coordinates Q is done. So, at the instant of impact, there will be some system state 
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5.2. Phase 3 - Regular Contact Motion 

Regular contact motion starts when the transient effects of the impact vanish. In this phase the restricted coordinates are kept zero. So, 
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and accordingly
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Now, relation (13) is replaced with
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while relation (14) still holds:
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In contact problems, the dynamic model has to take care of contact forces. Model (2), derived for a free flier, should be supplemented by introducing contact forces. A contact force acts along each of the constrained axes. So, there is a reaction force (or torque) for each coordinate from the set 
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 be the reaction vector. If a coordinate 
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 is a force. For a revolute coordinate, the corresponding reaction is a torque. 

The contact-dynamics model is obtained by introducing reactions into the free-flier model (2):
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Since this model involves N scalar equations and 
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 scalar unknowns (vectors 
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 and F), it is necessary to supply some additional conditions. The additional condition is the constraint relation (17), containing m scalar equations. So, (18) and (17) describe the dynamics of a constrained flier, allowing one to calculate the acceleration 
[image: image89.wmf]Q

&

&

 and reaction F (thus enabling integration of the equations and calculation of the system motion).

5.3. Phase 2 - Impact

Let 
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We now integrate the dynamic model (18) over the short impact interval 
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where

 
[image: image97.wmf]Q

Q

t

Q

t

Q

Q

c

c

¢

-

¢

¢

=

¢

-

¢

¢

=

D

&

&

&

&

&

)

(

)

(

.




(20)

During the approaching phase, the system model was integrated and the motion 
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Now, the model (19), contains N scalar equations with 
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that contains m scalar conditions. The augmented set of equations, (19) and (21), allows to solve the impact. The change 
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 is found and then (20) allows to calculate the velocity after the impact (i.e. 
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 represents the initial condition for the third phase, the regular contact motion (explained in 5.2).

6. Numerical Verification of the General Model

In order to verify the proposed general method, the appropriate software has been developed. Verification should be made by comparing the results obtained by using the new method with the ones obtained by some "classical" approach. Hence, we will consider a motion task from a well known field - bipedal gait. For modeling such motion, there already exist several software packages. We select the one developed in Institute "M. Pupin" in Belgrade [5] and it will be referred to as the "classical" method. So, a selected biped gait will be inputted to both the classical software and the new one. The results will be compared.

6.1. Configuration and Task 

We consider a humanoid having  n = 18 DOFs in its joints (Fig. 3). Definition of joint (internal) coordinates, vector 
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, is presented as well.  Main parameters of the humanoid are given in Appendix.
[image: image117.wmf]
Fig. 3   Configuration of the humanoid robot

The task is selected as a half-step – single-support phase. In order to formulate the dynamically balanced gait, the semi inverse method is to be applied. Let us explain shortly. The motion of the legs (the key joints) have been obtained by measurement. This means joints q5, q6, q7, q11, q12, and their time histories are shown in Fig. 4. In order to avoid unnecessary complexity, some other joints are kept in constant position (e.g. arms); these are joints  q3, q4, q8, q9, q10, q13, q15, q16, q17 and q18. Finally, the motions of the two waist joints, q1 and q2, are calculated so as to achieve the dynamic balance of the biped. These two motions are often referred to as compensation motions. The calculation is based on Zero-Moment-Point (ZMP) theory. Position of ZMP is prescribed, and compensation motions are calculated from the conditions: 
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. Figure 5 shows the obtained time histories of the waist joints motion. In the described way, the classical biped-gait-modeling software was applied to synthesize the half-step pattern. 
[image: image120.wmf]
Fig. 4   Time histories of the legs joints: q5, q6, q7, q11, q12
[image: image121.wmf]
Fig. 5   Time histories of the waist joints: q1 and q2
6.2. Analysis of Results 

The synthesized motion is now the input for the new general software. All dynamic variables (like joint torques, ground reactions, etc.) can be found. In order to efficiently compare the results of the two methods, we decided to check the position of ZMP calculated by using the two softwares. Let us explain why ZMP position (meaning 
[image: image122.wmf]ZMP
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 and 
[image: image123.wmf]ZMP

y

) is used for comparison. ZMP involves all the dynamic effects and any incorrectness in the modeling procedure will reflect in the calculated position of ZMP. Thus, ZMP offers the most appropriate way to check a new dynamic model. 

The classical method prescribed ZMP. It was prescribed immobile in the zero position. The new method calculated the ZMP position. Figure 6 demonstrates the deviation in ZMP. The x-y view of the calculated ZMP position is shown. The foot shape (i.e. the support region) is presented as well in order to estimate the relative deviation.
One may conclude that results coming out from two different methods agree, thus proving the correctness of the new general method. 
[image: image124.wmf]
Fig. 6   Planar (x-y) representation of the ZMP deviation

7. Simulation Example: Demonstrating Feasibility and Potentials of the General Method
In order to show the applicability of the proposed general method, a complex motion is simulated. Note that in this example no joint is kept fixed. The humanoid motion involves rather different situations regarding the contact between the flier and the ground. Let us explain.
7.1. What Will be Simulated? 

The flier is a humanoid robot whose configuration was explained in Sec. 6.1 
The robot falls down from the height of 0.1034m (see Fig. 7).  This free (unconstrained) motion represents Phase 1 of the motion and it ends when the right foot touches the ground (support). Due to the configuration of the support, the left foot will never make any contact.
The foot establishes the full contact with the ground. The infinitely short impact occurs at the instant of contact. The impact represents Phase 2 .

After the impact, the regular contact motion starts, constituting Phase 3. In this phase, the right foot has the full contact with the ground and the rectangular foot shape defines the support region. Single support is at stake since the left foot does not touch the ground. For some time ZMP will be inside the support region ensuring the dynamic balance. However, the large displacements of ZMP will be observed until ZMP finally reaches the edge of the support region. This is the end of Phase 3.

[image: image125.wmf]
Fig. 7   Initial position of the robot with respect to the ground.

When ZMP reaches the edge, the dynamic balance will be lost and the foot will start to rotate about the edge. This means that the humanoid is overturning and falling down. This motion is considered as Phase 4. 

During the motion, in all phases, the only control is the local linear feedback in each joint:  
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(22)
Sign * denotes the reference values, and kj and bj are stiffness and damping coefficients. Numerical values of the coefficients are given in Appendix.
The general method is capable of modeling and simulating all four phases of the motion although they are rather different regarding the character of contact.
● In Phase 1, there is no contact. Theory from Sec. 3 and 5.1. is applied for the free motion.
● Phase 2 and Phase 3 concern a full contact of the foot and the ground (according to Sec. 5, rigid, durable contact is assumed). This means that all the six functional coordinates are restricted: 
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 does not exist, 
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. This is shown in Fig. 2b. Theory from Sec. 5.3. is applied to solve the impact and the theory from 5.2 applies for the regular contact motion.
● Phase 4 considers a contact that allows one relative rotation, about the edge of the support region (i.e. the foot edge). This means that five coordinates are restricted. Thus, it holds that: 
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. This is shown in Fig. 2c. Theory from Sec. 5.3 applies again but with the different character of the contact.
The proposed method allows calculating all the relevant dynamic effects in all phases of motion
7.2. Simulation Results  

The software developed on the basis of the new general approach has been used to simulate the entire motion. When switching from one phase to the other, i.e., when the character of contact changes, the Jacobean matrix takes another form as a part of the general algorithm.
Let us discuss the results. Figure 8 shows the “movie” of the humanoid motion. Several time instants are selected and the position of the body presented. The characteristic instants and intervals are the following.
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► Phase 2 (the infinitely short impact) accomplishes at 
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► Phase 3 lasts for 
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, the ZMP position reaches the edge of the rectangular shaped foot. This is shown in Figs. 8b-8i. During this phase, Zero-Moment-Point (ZMP) and Center of Pressure (CoP) are identical. 
► Phase 4 lasts for 
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, the dynamic balance is lost and the foot starts to rotate about its edge (we are talking about the left-side edge of the right foot), thus changing the character of the contact. The humanoid overturns and for such unbalanced motion it is not appropriate to talk about ZMP but rather about CoP only. CoP moves along the left-side edge and at 
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► Next phase would take place for 
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. At that instant, the foot would change the character of the contact again, starting to rotate about the left front corner of the rectangle. The initial instant of this phase, 
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, is shown in Fig. 8k, but the simulation stops at that moment. Note that there would be no problem to continue simulation in this next phase.
[image: image145.wmf]
Fig. 8  The “movie” of the humanoid motion. Characteristic instants defining the phases of motion are indicated.
Figures 9 and 10 show the position  coordinates of the humanoid, 
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. It is evident, as expected, that in Phase 1 (free falling) only the vertical coordinate z changes. The others start to change after the contact is established. The evident progress in the magnitude of 
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, and in y and θ as well, shows that even during the balanced motion in Phase 3 the humanoid tends to overturn with no chances to keep the balance with the adopted local-control strategy. The absence of possibility to reestablish the balance is rather obvious during overturning in Phase 4. Only some radical action of the entire body might help in balancing and preventing the falling down. However, the control problems are out of the scope of this paper. The idea of the paper is to demonstrate the potentials of the new method for dynamic analysis.
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Fig. 9  Time histories of joint coordinates:
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[image: image154.wmf]
Fig. 10  Time histories of the main-body coordinates: 
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Figures 11 and 12 show the velocities. Fig. 11 presents time histories of velocities in joints (
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). One can see, once again,  that in Phase 1 only z changes. What is more important to observe are the discontinuities in velocities at the instant of impact, 
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. This is due to the fact that infinitely short impact (as assumed in this example) produces infinitely large contact forces and torques. 
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Fig. 11  Time histories of joint velocities:
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[image: image165.wmf]
Fig. 12  Time histories of the main-body velocities: 
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The quantities characteristic for the impact (occurring at 
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) are presented in Table 1. The changes in velocities are shown, 
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Table 1  Impact quantities: the change in velocities and the impact momentum
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We now analyze the behavior of ZMP and CoP. Figure 13 shows how ZMP moves during the full-foot contact in Phase 3. Time histories 
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 are presented. Large deviations from the initial position are obvious, but ZMP is still inside the support region defined by the foot rectangle (
[image: image198.wmf]m

m

width

length

1

.

0

2

.

0

´

=

´

) until 
[image: image199.wmf]s

t

714

.

0

2

=

. At 
[image: image200.wmf]2

t

, ZMP reaches the left-side edge of the right foot, as indicated in the figure. In Phase 2 (full-foot contact), ZMP and CoP coincide. Note that in Phase 4 (overturning) the term ZMP will not be used while CoP will.
The trajectory of ZMP and CoP becomes more clear if presented in the x-y plane, as done in Fig. 14. Several characteristic time instants have been selected to show how ZMP and CoP moves. The “movie” starts at 
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(the instant of impact) and covers the contact motion of Phase 3 and Phase 4. Fig. 14a presents the initial position of ZMP. Cases 14a-14g refer to full-foot contact (Phase 3). During this period, at  
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 , ZMP comes very close to the edge, almost touching it (compare 14d and 14e). However, The ZMP trajectory turns and ZMP moves back. Thus, the dynamic balance is preserved. Fig. 14g (instant 
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) shows the situation when ZMP finally reaches the edge with no intention to return. The balance is definitely lost and the overturning takes place. Cases 14g-14i refer to overturning (Phase 4). CoP moves along the left-side edge until it comes to the front edge (
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, Fig. 14i). At that moment the overturning would become a more complex motion – rotation about the corner point. However, our simulation stops at 
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Fig. 13  Time histories of ZMP coordinates in the phase of dynamically balanced motion (full-foot contact)
[image: image207.wmf]
Fig 14  Trajectory of ZMP/CoP for the two phases of contact motion 

(full-foot-contact phase and overturning phase) 
During the full-foot contact in Phase 3, all six functional coordinates are restricted and accordingly, 
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 does not exist. When overturning starts (Phase 4), five functional coordinates are restricted and one is free, 
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, representing the rotation angle about the foot edge. This coordinate is shown in Fig. 15. 
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Fig. 15  Foot rotation about its edge: time history of the rotation angle

Figure 16 shows the reaction forces: 
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) could not presented. The diagrams effectively cover Phase 2 and Phase 3. Although the diagrams look rather expected, it might be interesting to explain the discontinuities at the beginning of the overturning (
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). At this instant, rotation of the foot starts. The angular acceleration appears immediately, affecting the entire-system inertial forces. The immediate change in inertial forces causes the discontinuities in reactions. 
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Fig. 16  Time histories of the reaction forces

Appendix: Structural and Control Parameters
Table 2  Structural parameters of the humanoid robot
	segment
	width (m)
	height (m)
	mass (kg)

	trunk total - pelvis to head top
	0.4
	0.64
	30.85

	trunk - pelvis to shoulders
	0.4
	0.4
	

	pelvis
	0.27
	0.15
	6.96

	thigh
	
	0.44
	8.41

	shank
	
	0.42
	3.21

	foot
	0.1
	0.1
	1.53

	forearm
	
	0.308
	2.07

	upper arm
	
	0.264
	1.14

	total
	0.4
	1.75
	70.53


Table 3  Control parameters (feedback gains)
	i – joint number
	1
	2
	3
	4
	5
	6
	7
	8
	9

	ki – stiffness (N/rad)
	100
	200
	1200
	600
	800
	400
	800
	200
	1200

	bi – damping (Ns/rad)
	5
	5
	5
	5
	5
	5
	5
	5
	5

	i – joint number
	10
	11
	12
	13
	14
	15
	16
	17
	18

	ki – stiffness (N/rad)
	600
	200
	200
	200
	200
	20
	20
	20
	20

	bi – damping (Ns/rad)
	5
	5
	5
	5
	5
	5
	5
	5
	5


Conclusion
Rapid development of humanoid robots brings about new shifts of the boundaries of Robotics as a scientific and technological discipline. It has been finally recognized that humanoid robots represent the main direction of work in the entire robotics, being continually present from the very beginnings of scientific robotics in sixties and seventies. New technologies of components, sensors, microcomputers, as well as new materials, have allowed to create complex, human-like robots with the idea to replace humans in a variety of job. Hence, it is generally accepted that humanoid-robot shape and motion should be based on biomechanical principles. Due to the complexity and high requirements imposed on such robots, their control system has to utilize the dynamic model. So, the control, the design, and the simulation, strongly require general dynamic models that will make humanoid robots capable of handling the increasing diversity of expected tasks.
The work presented in this paper concerned a new general approach to modeling human and humanoid motion, allowing to develop different specific practical motions as special cases. To promote the approach in a qualified manner, it was necessary to check it numerically and show its potential by simulation on a carefully selected example. 
In order to check the new method numerically, a well-explored task was chosen – bipedal gait. The results obtained by the existing “classical” method and the ones obtained by the new approach have been compared, showing agreement. 

To demonstrate the applicability and potentials of the method by simulation, a motion example was selected which involved different sorts of contact: free (contactless) motion, impact, full-foot contact, and rotation of the foot about its edge.
As the final target for the future work, a general-purpose software was seen. It would be used for modeling and dynamic analysis of any human-like motion: from household duties, through the industrial jobs, to sports, and beyond. We mention few interesting examples: sports-man on a trampoline, man on the mobile dynamic platform, running, balanced motion on the foot - a karate kick, playing tennis, soccer or volleyball, gymnastics on the floor or by using some gymnastic apparatus, skiing - balanced motion  with sliding, etc.).

The authors are well aware of the extreme complexity of the problem of modeling biological systems, which stems from the complexity of the mechanical structure and actuation. The fact that the control of biological system is a still insufficiently studied area, contributes greatly to the significance of the problem. Because of that the authors started with the dynamic modeling of the structure of humanoid robots, which yielded a solid approximation of dynamics of the mechanical aspect of human motion.
References

[1] 
V. Potkonjak, M. Vukobratović, A Generalized Approach to Modeling Dynamics of Human and Humanoid Motion, Intl. Journal of Humanoid Robotics 2(1) (2005) 1-24.
[2]
Blajer, W., Czaplicki, A., Modeling and Inverse Simulation of Somersaults on the Trampoline, Journal of Biomechanics 34 (2001) 1619-1629.
[3]
W. Blajer, A. Czaplicki, Contact Modeling and Identification of Planar Somersaults on the Trampoline, Multibody System Dynamics 10, (2003) 289-312.

[4]
K. Nagasaka, Y. Kuroki, S. Suzuki, Y. Itoh, and J. Yamaguchi, Integrated Motion Control for Walking, Jumping and Running on a Small Bipedal Entertainment Robot, in Proceedings of the IEEE International Conference on Robotics, & Automation (ICRA), (New Orleans, USA, 2004), pp. 3189-3194.

[5]
M. Vukobratović, B. Borovac, D. Surla, D Stokić, Biped Locomotion: Dynamics, Stability, Control and Application (Springer-Verlag, 1989)
[6]
M. Vukobratović, B. Borovac, Zero-Moment Point - Thirty Five Years of its Life, International Journal of Humanoid Robotics, 1(1) (2004) 157-173.

[7]
M. Vukobratović, V. Potkonjak, S. Tzafestas, Human and Humanoid Dynamics - From the Past to the Future, Journal of Intelligent and Robotic Systems, August issue, 2004.

[8]
M. Vukobratović, V. Potkonjak, Applied Dynamics and CAD of Manipulation Robots, monograph, (Springer-Verlag, 1985).

[9]
M. Vukobratović, V. Potkonjak, V. Matijević, Dynamics of Robots with Contact Tasks, research monograph, (Kluwer Academic Publishers, 2003).






Fig. � SEQ Fig. \* ARABIC �1� Unconstrained system - free flier

















� Such contact is described in [8]. Some other sort of contact, involving deformation and elastodynamics, are described in [9, 1].
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